ยาและสารเคมีเพื่อการป้องกันและรักษาโรคสัตว์น้ำ

สถาบันวิจัยสุขภาพสัตว์น้ำ กรมประมง

2543
เอกสารเผยแพร่ กรมประมง

จัดพิมพ์โดย:
สถาบันวิจัยสุขภาพสัตว์น้ำ กรมประมง
สาขาราชบุรี ศรีสะเกษ 10900
โทรศัพท์ 5794122 5796803 5796977
โทรสาร 5613993
จดหมายอิเล็กทรอนิกส์ aahri@fisheries.go.th
เว็บไซต์: www.fisheries.go.th/aahri.html

พิมพ์ครั้งที่ 1 ปี 2543

ISBN : 974-7604-77-9

พิมพ์ที่:
โรงพิมพ์วิชาการพิมพ์ 446 ปากซอยอินทรามรร 24 ถ.สุทธิสารวิศวจิตร ต.อีแยง กรุงเทพ 10400
ยาและสารเคมีเพื่อการป้องกันและรักษาโรคสัตว์น้ำ

สุปราณี ขันบุตร
เติมดวง สมศิริ
พรภัส จันทร์วัชรบุตร

สถาบันวิจัยสัตวแพทย์น้ำ กรมประมง

2543
บทนำ

เอกสารเรื่อง ยาและสารเคมีเพื่อการป้องกันและรักษาโรคสัตว์น้ำ ฉบับนี้จัดพิมพ์ขึ้นเพื่อเป็นเอกสารเผยแพร่ ให้ความรู้เกี่ยวกับการใช้ยาและสารเคมีในการฯ เพาะเลี้ยงสัตว์น้ำอย่างถูกต้องและปลอดภัยแก่เกษตรกรและเจ้าหน้าที่ส่งเสริมการฯ กรมฯ ภายใต้โครงการ “Strategies for improved diagnosis and control of bacterial disease in small scale fresh-water aquaculture (Project DIFD R7463)” ซึ่งเป็นโครงการที่ได้รับการสนับสนุนจากการวิจัยจาก Department for International Development (DFID) ประเทศสหราชอาณาจักร

ผู้เขียนหวังเป็นอย่างยิ่งว่า เอกสารฉบับนี้จะเป็นประโยชน์ต่อการเลี้ยงสัตว์น้ำ ของไทยต่อไป
ยาและสารเคมีเพื่อการป้องกันและรักษาโรคสัตว์น้ำ

เมื่อเกิดการป้องกันหรือการป้องกันโรคสัตว์น้ำจากระบบไม่พัฒนา หรือที่พัฒนาแบบที่จะทำให้ระบบพัฒนา ที่อาจทำให้เกิดปัญหาด้านสุขภาพของสัตว์น้ำตามมา อย่างที่จะเห็นได้ง่าย มีการนำยาและสารเคมีมาใช้เพื่อป้องกันและรักษาโรคอย่างแพร่หลาย ยาและสารเคมีเหล่านี้นั้นหากไม่มีการใช้อย่างถูกต้องและเหมาะสม ตามความจำเป็นที่จะต้องใช้มีผลBADต่อสิ่งแวดล้อมนั้น แต่ยังหากในทางตรงกันข้าม การใช้อาหารและสารเคมีอย่างไม่ถูกต้องจะเกิดผลเสียตามมากอย่างมหาศาล อาทิ การเกิดเชื้อโรคในพื้นที่ดิน ยาและการใช้ยาที่ไม่ถูกต้อง การทำลายความหลากหลายของสิ่งมีชีวิตในบริเวณนั้น หรือการตกค้างของยาหรือสารเคมีในนั้น

เน้นด้าน นักวิจัยทางด้านประพฤติพฤติกรรมคิดค้นหาผลิตภัณฑ์ที่จะมีทางแผนการใช้ยาเพื่อการป้องกันและรักษาโรคสัตว์น้ำที่มีประสิทธิภาพ เช่น วัคซีน สารกระตุ้นภูมิ น้ำมันคุณภพ ซึ่งในปัจจุบันได้มีการใช้วัคซีนเพื่อป้องกันโรคต่างๆโรคไข้ชนิดต่างๆ แต่ยัง มีโรคสัตว์น้ำอีกหลายชนิดที่ยังไม่สามารถใช้วัคซีนป้องกันได้ ดังนั้นการใช้ยาหรือสารเคมียังคงเป็นสิ่งจำเป็นสำหรับการป้องกันโรคสัตว์น้ำอยู่ แต่ควรจะใช้อย่างถูกต้อง และตามความจำเป็นเท่านั้น

เมื่อกำหนดว่าจะโรคทางเลือดสัตว์น้ำประจำปีภัยคุกคามน้ำในน้ำ ต้องที่ ที่เกษตรกรกล่าวถึงที่ความ ยาและสารเคมีในการป้องกันโรค ซึ่งเป็นความคิดที่ไม่ ค่อยถูกต้องที่น้ำ เหตุการณ์การป้องกันโรคสัตว์น้ำมีหลายประการต่างกัน เช่น คุณ ภาพน้ำในปัจจุบัน คุณภาพของอาหาร หรือการเปลี่ยนแปลงของสิ่งแวดล้อม เป็นต้น การที่เกษตรกรจะตัดสินใจใช้ยาหรือสารเคมีในการป้องกันโรค ควรจะเป็นกรณีที่ ตัดสินไปยัง เนื่องจากมีการตัดสินใจแบบที่เนื้อ ปัจจุบัน หรือ เตรียม เป็นต้น นอกจากนี้เกษตรกรต้องมีความเข้าใจด้าน ฯ ที่เกี่ยวข้องอีกด้วย
สิ่งที่เกิดขึ้นในเรื่องความสัมพันธ์ก่อนตัดสินใจใช้ยาหรือสารเคมี

- คุณภาพน้ำในบ่อและการเปลี่ยนแปลงน้ำ ถ้าไม่ได้เปลี่ยนน้ำมากเป็นเท่า
 ขนาด หรือมีการให้อาหารแก่น้ำฟักค้อการของสัตว์น้ำ ทำให้มีอาหารเหลือ
 มาก อาจทำให้น้ำน่าเสีย ควรแก้ไขด้วยการเปลี่ยนน้ำน้ำ แล้วเติมบุญขาว
 และเปลือกในบ่อ รวมทั้งแสดงปริมาณอาหารที่ให้ถึงด้วย

- คุณภาพอาหารที่ใช้เสี่ยงสัตว์น้ำ กรณีที่เป็นอาหารผสมเองอาจมีปัญหาการ
 ขาดวิตามิน ตั้งแต่ั้นควรใช้วัสดุที่สด มีคุณค่าทางอาหารที่พอ และเหมาะสม
 กับชนิดของสัตว์น้ำ ตั้งกรณีที่เสี่ยงด้วยอาหารเม็ด ควรใช้อาหารที่ผลิตใหม่
 และเก็บไว้ในที่ไม่โดนแสงแดดหรือปัญหา เพาะอาหารที่เก็บไว้ให้ในที่ชิ้น หรือ
 เก็บเกี่ยว อาจมีปัญหาจากสารพิษที่ผลิตโดยเชื้อชา

- ในช่วงที่อากาศค่อนข้างเย็น สัตว์น้ำส่วนใหญ่จะกินอาหารน้อยลง ตั้งแต่การผลิต
 ปริมาณอาหารที่ให้ให้ป้องกันการเก็บเสียของอาหารในบ่อ

- การเลี้ยงปลากิ้งอาจทำให้เหมาะสมเกินไป เมื่อเลี้ยงปลากิ้งได้ระยะหนึ่ง ปลากิ้งจะรู้
 น้ำออกหัวในช่วงเช้า ถ้าไม่ได้รับแก่ปลากิ้งจะหยุดตาย กลายเป็นกิ้งจาก
 ปริมาณออกซิเจนในน้ำไม่เพียงพอ น้ำในบ่ออาจมีสีเขียวจัด ควรแก้ไขด้วยการ
 กระจายปลาไปยังบ่ออื่น รวมทั้งเปลี่ยนน้ำย่อย กรณีมีสีเขียวให้ใช้เครื่องดีน้ำ
 หรือดูดน้ำทรายไปในอากาศเพื่อช่วยเพิ่มออกซิเจนในบ่อ

- ปลากิ้งใช้สารพิษ กรณีที่เกิดการตายของปลาเป็นจำนวนมากโดยไม่มีอาการ
 ติดปฏิกิริยาใด ๆ ก่อนการตาย ปลากิ้งได้รับพิษจากยาฆ่าแมลง ยาปราบวัชพืช
 หรือน้ำเสียจากโรงงานอุตสาหกรรม ซึ่งปลาที่ตายส่วนใหญ่จะมีการขึ้นเนื้อ
 ออกจากการตัวมาก กระพุ้งเกี่ยมเปิดกว้าง อาการของปลาในลักษณะนี้ ไม่
 สามารถแก้ไขได้

- สัตว์น้ำที่พบว่ามีการติดเชื้อไวรัสน่าจะแสดงอาการป่วยตามแต่ชนิดของไวรัสที่
 เข้าไปในตัวของสัตว์น้ำ และมีอัตราการตายค่อนข้างสูง กรณีที่ตรวจพบไวรัส
ในสัตว์น้ำที่ป่วย ไม่สามารถใช้ยาหรือสารเคมีรักษาโรคได้ เกษตรกรควรรับ
ปุ๋ยหรือปุ๋ยพืชในป่าให้ดี เกลือสัตว์น้ำแข็งจะตกสู่อากาศจากโรคได้เอง แต่ถ้า
เป็นโรคฉนวนที่ทำให้เกิดโรคแบบรุนแรงนั้นไม่สามารถรักษาได้ และเกษตรกร
ควรระมัดระวังการแพร่ระบาดของโรค โดยการกำจัดสัตว์น้ำ ใส่ยาฆ่าเชื้อลงในบ่อ
และทำแอร์เคลื่อนย้ายสัตว์น้ำไปยังบ่ออื่นหรือพักผ่อน รวมทั้งทำสัตว์น้ำที่
ยอดตายจากการติดเชื้อไวรัสมาทำเป็นพืช-แมลงพื้นถิ่นในการเพาะขยายพันธุ์
ชนิดของยาและสารเคมี

ยาและสารเคมีที่ใช้กันในปัจจุบันมีมากมายหลายชนิด และมีการตั้งข้อ
การต่างกันที่แตกต่างกันออกไป ซึ่งคุณภาพของยาและสารเคมีที่มีจริงจำานวน ใน
ปัจจุบันยังไม่มีหน่วยงานใดควบคุมอย่างเข้มงวด ดังนั้นการตัดสินใจใช้ยาหรือ
สารเคมี เกาะติดการควบคุมใช้ยาและสารเคมี ชนิดที่มีluent แบ่งออกส่วนนั้นและว่ามีตัว
ยาหรือสารเคมีอะไรบ้าง ไม่สามารถที่จะระบุชัดเจน เป็นต้น ยาหรือสารเคมีที่นิยม
ใช้ในการทำเพลิงสังเคราะห์ไม้ ได้แก่

เกลือ (โซเดียมคลอไรด์ NaCl)
เป็นสารเคมีที่มีราคาถูก และหาใช้ได้ง่ายที่สุด จัดเป็นสารประกอบที่ละลายง่ายได้ดี
โดยจะแตกตัวให้เกิดผลเป็นไอออน และคลอไรด์ไอออน เกลือสามารถแบ่งออกได้เป็น 2
ชนิด คือ เกลือสินแร่ (rock salt) และเกลือแปลง (table salt) โดยทั่วไปจะใช้กันใน
รูปเกลือแปลง ประสิทธิภาพของเกลือแปลงมีดังนี้

- ใช้ในการกำจัดปิลที่ภายนอก

<table>
<thead>
<tr>
<th>อัตราการใช้</th>
<th>ระยะห่างในการใช้</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 – 0.5%</td>
<td>แยกตลาด</td>
</tr>
<tr>
<td>1%</td>
<td>30 น้ำที่ – 1 ชั่วโมง</td>
</tr>
<tr>
<td>3%</td>
<td>2 – 3 นาที</td>
</tr>
</tbody>
</table>

- ใช้ลดความเครียดในระหว่างการทำงาน
 - อัตราการใช้ 0.1%
- ช่วยลดความเป็นพิษของแอมโมเนีย ในโค และกิ้งซิลเวิร์ร่า (H₂S)
 - อัตราการใช้ 60-100 กิโลกรัมต่อพื้นที่บ่อ 1 ไร่
ต่างหัวทิม (Potassium permanganate, KMnO₄)
เป็นสารเคมีที่มีลักษณะเป็นเมล็ดสีม่วงเข้ม เป็น.nanoเม็ดโซลูชัน ปราศจากกลิ่น เมื่อละลายนั้นจะได้สารละลายสีม่วงหรือชมพูอมม่วง ถ้าเปรียบเทียบกับสารต่างๆดังนี้
- ใช้ในการกำจัดปศุสิพยาธิออก ในบ่อปุ๋ยหรือบ่อต้นที่น้ำใส ใช้ในอัตรา 2-4 ppm แช่ต่อ
- ใช้ทำเชื้อ ปุ๋ยกลิ่นที่ใช้ในการเพาะเลี้ยงสัตว์น้ำ เช่น กระจะ ปลาสวยงาม ใช้ในอัตรา 20-25 ppm แช่มานาน 24 ชั่วโมง
- ใช้ก้านจัฐปูสิพยาธิ เชื้อรา และแบคทีเรียในอาหารสัตว์น้ำแมวบีบ เช่น สารใจ ลูกน้ำโดยการแช่ในสารละลายต่างหัวทิมเข้มข้น 100-150 ppm นาน 3-5 นาที
- ใช้ลดปริมาณแคลเซียมและสารต้นที่มีในน้ำ ปริมาณการใช้ชื่ออยู่กับความเข้มข้นของน้ำ ถ้าน้ำมีสีเข้มมาก ต้องใช้ในปริมาณสูงขึ้น
- สามารถใช้ลดความเป็นพิษของก้าชื้นแบ่(H₂S) และไลดิน(Rotenone)
- ข้อควรระวังในการใช้ต่างหัวทิม
 - ไม่ควรใช้เพื่อเตรียมออกซิเจนในป่าปลา
 - ไม่ควรใช้ร่วมกับฟองแมกวาล
- เนื่องจากสามารถทำให้แคลเซียมลดลงได้ จึงมีผลทำให้เกิดการตันตันออกซิเจนในน้ำโดยทางซัน ดังต่างหัวทิมมีผลทำให้แคลเซียมลดลงและเกิดการน้ำเสียของแคลเซียม
 - ไม่ควรให้ถูกมีหน่วยของผู้ใช้โดยตรง
 - ควรเก็บต่างหัวทิมในที่ไม่ถูกแสง
ฟอร์มัลิน (Formalin)

น้ำยาฟอร์มัลินหรือที่เรียกถึงทั่วไปว่าการฉีดยา เป็นสารละลาย 37-40 เบอร์เชื้อติดของการฟอร์มัลิดีไฮด์ในน้ำ แต่โดยการฤดูกาลของสารเป็น 100 เบอร์เชื้อติด มีสูตรทางเคมีคือ CH₂O ซึ่งจะมีเมทิลแอลกอฮอล์ (methyl alcohol) 10-15 เบอร์เชื้อติดเป็นองค์ประกอบ เพื่อป้องกันมีไว้ฟอร์มัลินเปลี่ยนรูปไปเป็นทรัพยากรฟอร์มัลิดีไฮด์ (paraformaldehyde) ซึ่งเป็นสารที่มีความเป็นพิษสูง ฟอร์มัลินที่มีคุณภาพจะเป็นสารละลายใส่ไม่มีสี กลิ่นดุน แต่เก็บไว้บ้าน หรือเก็บไว้ในภาชนะที่มีแสงส่องไม่ได้จะพบว่ามีตะกอนสีขาวเกิดขึ้น เมื่อมีสารจากฟอร์มัลินเปลี่ยนรูปไปเป็นทรัพยากรฟอร์มัลิดีไฮด์ ซึ่งไม่สามารถนำมาใช้ในการรักษาโรคสัตว์น้ำ ประสิทธิภาพของฟอร์มัลินที่เกี่ยวข้องกับโรคสัตว์น้ำคือ

- ใช้ในการกำจัดป้องกันยาชน
 - อัตราการใช้ 25 – 50 ppm แช่ตกคลอด หรือ 100 – 200 ppmแช่นาน 30นาที -1 ชั่วโมง

- ใช้ร่วมกับมลเลกที่เกิดขึ้นในการกำจัดเชื้อโรคสัตว์ในน้ำ (White spot หรือ Ich)
 - อัตราการใช้ฟอร์มัลิน 25 ppm ผสมกับมลเลกที่เกิดขึ้น 0.1 ppmแช่ตกคลอด

- ข้อควรระวังในการใช้ฟอร์มัลิน
 - ฟอร์มัลินสามารถปลอมฉลามออกซิเจนในน้ำได้โดยตรง จะน้ำทะเลใช้ควรระวังปัญหาการขาดออกซิเจน
 - ถ้าใส่ฟอร์มัลินลงในน้ำกร่อย หรือบ่อปลา ควรเพิ่มออกซิเจนลงในน้ำโดยการเปิดเครื่องจัดอากาศแรง ๆ
 - กรณีใส่ลงในน้ำกร่อยควรสังเกตสีของน้ำก่อน ถ้ามีสีเขียวจัดควรเปิดเครื่องดีน้ำ หรือใช้การหมักน้ำเชื่อมไปในอากาศเพื่อเพิ่มออกซิเจนตัวยาว
 - ควรทดสอบฟอร์มัลินลงในน้ำช่วงที่มีแสงแดด
- ไม่ควรสั่งผลิตภัณฑ์ในช่วงตอนเย็น
- ไม่ควรใช้ผลิตภัณฑ์ร่วมกับตัวยาที่มี
- ควรใส่กั้นผลิตภัณฑ์ในภาชนะบรรจุที่เปิดแฝง หรือในขวดสีเข้ม
- ควรระวังมิให้ผลิตภัณฑ์สัมผัสผิวหนังหรือตาของผู้ใช้

มาลาไซค์กรีน (Malachite green)
ลักษณะเป็นเม็ดละเอียดสีเขียว เป็นสารย้อมสี (diarylmethane dye) จัดเป็นสารก่อมะเร็งชนิดหนึ่ง โดยมีนิคที่ใช้ในผลกระทบต่ำ ๆ เป็นชนิด Zinc-free oxalate นิยมใช้ในการกำจัดเชื้อรา และป้องกันภูมิภัยทั่วไป

- อัตราการใช้ 0.1-0.2 ppm แต่ละลด
- ไม่ควรใช้ในการพาเล่ย์สัตว์น้ำที่เลี้ยงไว้บริโภค ควรใช้เฉพาะในกลุ่มปลา สวยงามเท่านั้น
- การใช้ควรบริหารมัจรองได้มาก เมื่อจากสารก่อมะเร็ง ไม่ควรให้สัตว์สูญภัยหนังโดยตรง

คลอรีน (Chlorine)
เป็นสารเคมีที่มีสีเขียว มี 2 รูป คือ คลอรีนแกรน (แกลลิ่มไฮโปรคลอรีน Ca (OCl) 2) หรือชนิดน้ำที่อยู่ในรูปของน้ำยาพอกท่อ (โซเดียมไฮโปรคลอรีน NaOCl) ซึ่งจะมีสีเขียว ไวต่อที่อยู่ประมาณ 5.25 เปอร์เซ็นต์ในน้ำ คลอรีนน้ำออกฤทธิ์ในน้ำจะแตกตัวออกฤทธิ์ในน้ำ คลอรีนน้ำออกฤทธิ์ในน้ำจะแตกตัวออกฤทธิ์ในน้ำ ดังนั้น เมื่อจากน้ำมีราคากลั่วกว่าชนิดน้ำน้ำมาก และละลายในน้ำใช้มากกว่า ประสิทธิภาพของสารคลอรีนมีดังนี้

- นิยมใช้ในการกำจัดเชื้อและการทำลายต่าง ๆ ในน้ำ นิยมใช้การผลิตเครื่องน้ำในแบบน้ำ ใช้ในอัตรา 10-30 ppm
• ใช้ในการฆ่าเชื้อราขนาด ถุปร่นในโครงพันธุ์ กิ่งตอกด้วยน้ำ 10-30 ppm ราค นาน 1 คืน

• ใช้ทำความสะอาดพื้นโครงพันธุ์ กิ่งตอกด้วยน้ำ 50-100 ppm ราค ให้ท่วม ทิ้งไว้ นาน 30 นาที แล้วล้างออกด้วยน้ำสะอาด

• ชื่อสารเคมีในการใช้คลอรีน
 -ไม่ควรเก็บคลอรีนเมื่อที่ชื้น เพราะคลอรีนจะละลายตัวเป็นก้อนแข็ง
 -เวลาใช้ควรระวังมิให้สูมผิดและผิวหนัง
 -คลอรีนเป็นสารเคมีที่มีความเป็นพิษต่อสัตว์น้ำสูง ดังนั้นเมื่อจะใช้น้ำที่มีการฆ่าเชื้อคลอรีนควรทิ้งไว้ให้คลอรีนละลายตัวก่อนอย่างน้อย 3-5 วัน หรือใช้สารกำจัดคลอรีนได้แก่ นิโคไดห์ไฮวัลเพท ใส่ลงในน้ำก่อนใช้
 -ก่อนนำน้ำที่ผ่านการฆ่าเชื้อคลอรีนไปใช้ควรแน่ใจว่าคลอรีนละลายด้วยหมดแล้ว โดยการใช้ซูนน้ำยาแดงตอบคลอรีน หรือใช้สารเคมีไป แลวเพิ่มไอโอดิเนท (KI) ประมาณ 2-3 เกล็ด ใส่ลงในน้ำ ถ้าน้ำย้อมมีคลอรีนอยู่จะมีสีน้ำตาลเกิดขึ้น

โซเดียมไฮวัลเพท (Sodium thiosulphate Na₂S₂O₃)
ลักษณะเป็นน้ำสีใส มีความเป็นพิษต่อสัตว์น้ำระดับหนึ่ง แต่ส่วนนี้น้ำย้อมในน้ำเพียงเล็กน้อย ใช้ในการกำจัดคลอรีน
• ย้อมน้ำที่ใช้ประมาณ 5-7 เท่าของปริมาณคลอรีน ซึ่งโดยทั่วไปจะใช้ใน น้ำประมาณ 10-20 ppm ในน้ำประมาณ หลังจากเตรียมสารนี้แล้วลงในน้ำแล้วสามารถนำน้ำนี้มาใช้ได้เลย
ไตรคลอร์ฟอน (Trichlorfon)
เป็นยาดำแมลงในกลุ่ม organophosphate ซึ่งทางเคมี Dimethyl (2, 2, 2-trichloro-1-hydroxyethyl) phosphonate มีสูตรทางเคมีคือ C₇H₅Cl₂PO₄ มีชื่อทางการค้าหลายชื่อ ได้แก่ ติพเทอร์เร็กซ์(dipeterex) ซินเทอร์เร็กซ์(synterex) ไตรคลอร์ฟอน (dylox) โฟรคลอร์ (fosclor) นิภูฟอน (neguvon) เซกฟอน (cekufon) แอนทอน (anthon) และมาไซเดิน (masoten) ลักษณะเป็นเม็ดละเอียดสีขาวหรือเนื้อต่งอ่อน ดูดความชื้นได้ดี ยาดำแมลงชนิดนี้มีประสิทธิภาพต่างๆดังนี้

- ใช้ในการกำจัดประสิทธิภาพออกได้แก่ เนียบปลาน หนอนสามอ่อน ถ้าจะใช้ 0.25-0.5 ppm ทิ้งไว้ 3-4 วัน แล้วหลาน แล้วใส่ยาปริมาณเท่าเดิม ทำซ้ำจนน้ำเย็น
- ใช้ในการกำจัดพืชของสัตว์น้ำ ได้แก่ แมลง ทุ่ง ปู หายรูปเนื้อเลี้ยงถิ่นเมื่อเปลี่ยนสัตว์น้ำรุ่นต่อไป ถ้าจะใช้ 0.5-1.0 ppm ทิ้งไว้ 7-14 วัน จนผ่านสัตว์น้ำเลี้ยง

ข้อควรระวังในการใช้ไตรคลอร์ฟอน
- ไตรคลอร์ฟอนเป็นยาดำแมลง ดังนั้นการใช้ควรทำด้วยความระมัดระวังเข้มดีกับการใช้ยาดำแมลงทั่วไป ควรใช้ยาปิบปากและจุกในระหว่างการทำอาหาร และควรใช้物品เนื้อในขณะปฏิบัติงาน
- ควรกีบไตรคลอร์ฟอนไปในกรณีที่มีผีเป็ดมีดิน หรือผีชนกัน ความชื้น แล้วตั้งไว้ในที่อากาศแห้ง เนื่องจากไตรคลอร์ฟอนเป็นสารเคมีที่สามารถกู้ดความชื้นได้ดี
- เมื่อไตรคลอร์ฟอนเปลี่ยนสภาพเป็นของผงละลายไม่ควรนำมาใช้
- ภายหลังจากการใส่ไตรคลอร์ฟอนไปยังสัตว์น้ำ ควรทำไว้อย่างน้อย 14 วันก่อนจับสัตว์น้ำมาบริโภค
ไตรฟิวเรลิน (Trifluralin)
เป็นยากำจัดพืชรักษา ลักษณะเป็นสารละลายใส มีสูตรทางเคมี คอ α, α, α trifluoro-2, 6-dinitro-N, N-dipropyl-p-toluidine มีชีวทางการกำจัดหลายชนิด ได้แก่ เทรฟีแลน (Treflan) โทลิน (Tolin) โทลิน (O-Lan) ใช้ในการกำจัดเขียวขาว แต่ในปัจจุบันมีผู้นำมาใช้ในการกำจัดโรคสัตว์ตามน้ำ เช่น ฟูไอแคนเนียม (Zootannium sp.) และเทียบระซัง (Trichodina sp.)
- อัตราส่วนที่ใช้ 8-10 ซีซีต่อหน้า 100 ลูกบาศก์เมตร หรือ 100-120 ซีซีต่อป้อนน้ำ
- ขนาด 1 ปี น้ำลึก 1 เมตร

ข้อควรระวัง
- ระวังอย่าให้เข้าตา หรือสูดผิด
- ควรหยุดใช้ยาหกชั้นวัสดุน้ำอย่างน้อย 7 วัน

เบนซัลคลอเรียม คลอไรด์ (Benzalkonium chloride, BKC)
เป็นสารเคมีในกลุ่มยามง่ายชีวะ (Quaternary ammonium compound) ลักษณะเป็นสารละลายใสในสียีน สีแดง ประกอบด้วยสาร N-Alkyl (C12-C16)-N, N-dimethyl-N-benzylammonium chloride และ เอทานอล ซึ่งมีโครงสร้างสารเคมีที่ง่ายชีวะ มี 2 ระดับความเข้มข้น คือ บีซี 50% และบีซี 80% นิยมใช้ในการกำจัดโรคสัตว์ตามน้ำ และกำจัดโรคสัตว์ตามน้ำ เช่น เทียบระซัง (Trichodina sp.) อีพิสทีลิส (Epistylis sp.) และสามารถกำจัดโรคสัตว์ตามน้ำได้ดี
- อัตราส่วนที่ใช้ คือ 0.3-0.8 ppm หรือ 0.5-1.3 ลิตรต่อพื้นที่ป้อง 1 ไร่ ที่มีระดับน้ำลึก 1 เมตร หรือ 1-2 ppm แต่ละน้ำ 1 ชั่วโมง

ข้อควรระวัง
- ระวังอย่าให้เข้าตา บีริใช้มาจาก หรือสูดผิด
- ไม่ควรใช้ในบัตรที่มีพืชน้ำ เช่น ผักสดจากน้ำ ผักปลูก ในจานจากบัตร
ตามการพืชน้ำได้ ถ้าจำเป็นต้องใช้ หลังการใช้ควรนำพืชน้ำที่ตายออก เพื่อไม่ให้เน่าในแม่น้ำเสีย
- เป็นวัสดุยุ่งยาก ดังนั้นควรเก็บให้ห่างจากแปลงใหม๊

โพвидอน ไอโอดีน (Povidone Iodine)
จัดอยู่ในกลุ่มยาฆ่าเชื้อที่มีการใช้อย่างแพร่หลายทั่วไปในทางแพทย์ ปศุสัตว์ และการ
เฉพาะเจาะจงสัตว์น้ำ มีชื่อทางการค้าหลายชื่อ แต่ที่นิยมใช้กันมากฤษี่ๆได้ บตาดิน (Bactadine) เป็นสารเคมีเฉพาะระหว่างโพвидอน (Iodine) และโพвидอน (polyvinylpyrrolidone) ออกฤทธิ์ได้ดีในน้ำโดยจะทำปฏิกิริยาเก็บน้ำแล้วเปลี่ยนไป
อยู่ในรูปของ H2Oで ซึ่งมีฤทธิ์ในการฆ่าเชื้อแบบที่เรียกว่า ๆ
- อัตราการใช้ชีววัสดุยุ่งยากของตัวอย่างที่แตกต่างกันผลิตภัณฑ์ ถ่ายทอด
ตรวจสอบผลลัพธ์การใช้ยาเข้าทางกายะและระบุวิธีการให้ได้ก่อน

ปูนขาว (Lime)
วัตถุในกลุ่มที่มีรายอยู่ตามท้องตลาด สามารถแบ่งออกได้เป็นกลุ่มใหญ่ๆ 4 กลุ่ม
ตามลักษณะขององค์ประกอบและปฏิกิริยาการทำลายความเป็นภูมิคุ้มกันแต่ละ
t่างกันไป ดังนั้นถ้าต้องการจะทำลายความเข้าใจถูกชนิดของปูและความต้องการ
ใช้ปูในแต่ละครั้ง เพื่อที่จะเลือกใช้ปูได้ตรงตามตัวอยู่ประสงค์โดยไม่ทำให้เกิด
อันตรายต่อสัตว์น้ำ
- ปูนบรรลุ หรือ ดิน머รร์ เป็นวัสดุที่มีฤทธิ์ซึ่งสามารถรักษาจากการทำปฏิกิ
รกิจต่างๆในระดับที่ถูกน้ำเพื่อที่จะทำลายจากปูและฟ้อนผลแสดงกันดิน มี
องค์ประกอบหลักเป็นพวกเจลลี่ของคาร์บอเนต จะเห็นได้ว่าความบริสุทธิ์ของ
ปูนบรรลุจัดเป็นยอมให้ปูบรรลุเชื้อและฟ้อนของดอกดินนั้นเอง ปูนบรรลุมี

12
อ่านมา ในภาวะกำลังจัดทำผู้ค้า ปุณณ์รักที่มีรายเดือนหัวตัดด้วย จะมาจากแหล่งบุคคลที่ผ่านการอบรมหรือประสบการณ์จริง หรือ ผู้ค้าที่มีประสบการณ์เพียงพอ ที่จะส่งผ่านสู่ผู้ค้าส่วนตัวได้ที่ยังไม่ได้ก่อตั้ง แต่ยังมีการป้องกันให้ปลอดภัย มีความรู้ดีที่สุด
- นิยมใช้ในการเบียร์สุราที่เกี่ยวข้องกับความเป็นภัตตาคาร ที่ไม่ได้เปลี่ยนแปลงในราคาอย่างเข้มแข็ง อย่างที่มีการคิดราคาอย่างรุนแรง ไม่ได้ทำให้ลดลงได้มาก แต่ยังคงมีการปรับราคาอยู่ในช่วง 0.10 - 0.20 ดอลลาร์.
- การสร้างราคาในภัตตาคารนี้จะเป็นอย่างรุนแรงในราคา 0.01 - 0.02 ดอลลาร์.
- ในระดับราคาเบียร์สุราที่มีการปรับราคาอยู่กับความเป็นภัตตาคาร ที่มีการปรับราคาอยู่ในช่วง 0.10 - 0.12 ดอลลาร์.
- ในส่วนราคาเบียร์สุราที่มีการปรับราคาอยู่ในราคา 0.08 - 0.10 ดอลลาร์.
- ทุกสิ่งที่มีการปรับราคาอยู่ในราคา 0.05 - 0.07 ดอลลาร์.

- ปุณณ์ขาว เป็นผู้ค้าที่มีการเบียร์สุราที่มีราคาเรียกว่า 600 - 900 ดอลลาร์.
- การเบียร์สุราที่มีการปรับราคาอยู่ในราคา 0.03 - 0.04 ดอลลาร์.
- ปุณณ์ขาวจะมีการเบียร์สุราที่มีการปรับราคาอยู่ในราคา 0.02 - 0.03 ดอลลาร์.
- ปุณณ์ขาวจะมีการเบียร์สุราที่มีการปรับราคาอยู่ในราคา 0.01 - 0.02 ดอลลาร์.
- ปุณณ์ขาวจะมีการเบียร์สุราที่มีการปรับราคาอยู่ในราคา 0.00 - 0.01 ดอลลาร์.
- การให้ปุ๋ยกรดในยับยั้งในป่าชุ่มแพร่ หรือถิ่นที่ตั้งจะทำให้ค่าพื้นใน
 น้ำสูงขึ้นอย่างเร็วเป็นอันตรายต่อสัตว์น้ำได้ จึงไม่ควรใช้ปุ๋ยกรดเพื่อ
 ปรับค่าพื้นของน้ำในถิ่นที่ตั้ง หรือบริเวณ
- การให้โดยทั่วไปและเดินสัตว์น้ำจะใช้ครั้งละประมาณ 30-50
 กิโลกรัม/ไร่ แต่ถ้าค่าพื้นในป่าต้นมากก็อาจใช้ปุ๋ยกรดในปริมาณ 100
 200 กิโลกรัม/ไร่ได้

ปุ๋ยป้องกันโรคหรือปุ๋ยแม่ เป็นสารประกอบกลุ่มออกไซด์ซึ่งได้จากการนำ
หินปู หรือเปลือกหอย (สารประกอบแคลเซียมคาร์บอนัต) มาแม่ที่ความ
ร้อนแล้วผลิตให้อย่างลง ปุ๋ยที่ได้จะเป็นแคลเซียมฟอสเฟต ซึ่งจะกระจาย
การผลิตจะต้องผ่านขั้นตอนการเผา จึงเกิดการป้องกันของต้นและขึ้นเจ้าเลี้ยง
ดียากับปุ๋ยกรดได้

- รังสีปุ๋ยกลุ่มซึ่งจะเกิดปฏิกิริยากรดและทำลายธาตุได้สูงที่สุดในวันสุดท้าย
ปุ๋ยที่ใช้ก่อนอยู่ ดังนั้นจึงควรที่จะควรระดับวันในการใช้ปุ๋ยชนิดนี้ให้
มากเป็นพิเศษ เนื่องจากจะเกิดความร้อนสูงในระหว่างการใช้
- ทำให้คุณภาพน้ำดีโดยเฉพาะค่าพื้นในป่าต้นอย่างรวดเร็ว เป็นอันตราย
t่อสัตว์น้ำได้ง่าย
- ถ้าหากไม่อาจเป็นควรเด็กเด็ดเดี่ยวใช้รังสีปุ๋ยกลุ่มซึ่งโดยตรงกับปุ๋ยที่มี
สินน้ำช่วยยั้งอัตราการใช้ไม่ควรจะสูงกว่า 30 กิโลกรัม/ไร่

ปุ๋ยไนโอม์ เป็นสารประกอบปุ๋ยที่เกิดขึ้นตามธรรมชาติเช่นเดียวกับปุ๋ย
มวล แต่เมื่อใส่ยาด้วจะให้สารประกอบแคลเซียมคาร์บอเนตและแมกโนเลียม
คาร์บอเนต
- การทำปฏิกิริยาของปุ๋ยชนิดนี้จะเกิดอย่างช้าๆ เช่นเดียวกับปุ๋ย
มวล แต่จะให้แมกเนียมเพิ่มขึ้นมาก ซึ่งจะมีประโยชน์อย่างมากกับ
พวกโรคติดต่อที่เรียนนี้ จึงนิยมใช้ยาในบ่อยเพื่อช่วยให้โรคติดต่อเริ่มเย็นขึ้น

- เนื่องจากปฏิกิริยาที่เกิดไม่ช้าแรง การใช้ยาจึงไม่จำเป็นต้องยาวนานด้วย ต้องสั้นๆ และไม่ทำให้เกิดการเปลี่ยนแปลงของค่าปกติอย่างรวดเร็ว
- ฉะนั้นการใช้ยาจึงมีเหตุผลของการเจริญของโรคติดต่อนี้ควรใช้ในปริมาณ 20 - 30 กิโลกรัม/วัน ต่อครั้ง โดยความต้องการใช้จะสัมพันธ์กับปริมาณการเจริญ และการเจริญต่อพันธุ์ของโรคติดต่อในบ่อย ซึ่งก็จะแตกต่างกันไปในแต่ละพันธุ์

- เกณฑ์การระบบจะต้องใช้การสังเกตเป็นหลัก ว่าหลังจากยาให้แล้วมีการตายของโรคติดต่อนี้จะเกิดเป็นพองหรือเมื่อหายชันหรือไม่ ถ้ามีการตายหรือลดจำนวนของโรคติดต่อนี้มากก็จำเป็นจะต้องเปลี่ยนยาเพิ่ม ซึ่งโดยทั่วไปไม่น้อยที่เป็นติดกรม หรือ ติบมาหรือ อาจจะต้องเติมยาอื่นๆ ของการเลี้ยงสัตว์นี้ เป็นต้น

ยาถ่ายยาปฏิกิริยา เมโทรนิดโซล (Metronidazole)
ยาถ่ายยาปฏิกิริยาเหนือเกินกันทั่วไป ยาถ่ายเชื้อหิน (Trichomonas) เป็นยาปฏิกิริยาในกลุ่ม Nitroimidazoles ที่สามารถเป็นยาต้านไม่ละลายน้ำ มีความสามารถในการแพร่กระจายไปยังเนื้อเยื่อ รวมทั้งระบบประสาทได้ดี นิยมใช้ในการกำจัดไวรัสชัว ซึ่งเป็นปัจจัยในทางเดินอาหาร เช่น Hexamita sp., Opalina sp. เป็นต้น

- ฉะนั้นส่วนที่ใช้ยาเนื้อ 250 มิลลิกรัม 10-15 เม็ด ผสมกับอาหาร 1 กิโลกรัม ให้กินติดต่อกัน 3-5 วัน
ยาด้านจุลชีพ หรือยาปฏิกิริยา

เป็นกลุ่มยาที่ใช้ในการรักษาโรคติดเชื้อแบบที่เรียก ชนิดที่นิยมใช้กันอย่างแพร่หลายที่สุด เนื่องจากพาหุรัดหมายและสาเหตุต่าง ๆ มากมาย ได้แก่ อะกิชิเดราซัยคลิน คลอเตราซัยคลิน และเปตราซัยคลิน ยาชนิดอื่นที่ใช้กันทั่วไป ได้แก่ อะกิสิน อะซิด (oxolinic acid) ออโรฟีอกซักซิน (norfloxacin) เอนโรฟีอกซักซิน (enrofloxacinc) โนริฟูราโนซิน (nitrofurantoin) โนริฟูราซอล (nitrofuransone) ฟูราไซคลิน (furanolidone) และยาในกลุ่มซอลฟา เช่น ซอลฟามีโอซักซิน (sulfameracin) ซอลฟามีโอซักซิน-ตริเมทิปิรม (sulfamethaxole/trimethoprim)

<table>
<thead>
<tr>
<th>สิ่งยา</th>
<th>แหล่งดอด</th>
<th>ผสมยาที่ดีที่สุด</th>
</tr>
</thead>
<tbody>
<tr>
<td>อะกิชิเดราซัยคลิน</td>
<td>10-30 ppm</td>
<td>3-5 กรัม/อาหาร 1 กลิ่นคักรัก</td>
</tr>
<tr>
<td>อะกิสิน อะซิด</td>
<td>-</td>
<td>1-3 กรัม/อาหาร 1 กลิ่นคักรัก</td>
</tr>
<tr>
<td>ออโรฟีอกซักซิน</td>
<td>10 ppm</td>
<td>1-3 กรัม/อาหาร 1 กลิ่นคักรัก</td>
</tr>
<tr>
<td>เอนโรฟีอกซักซิน</td>
<td>5 ppm</td>
<td>5 มิลลิกรัมต่อหน้าหน้าปก 1 กลิ่นคักรัก</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>สิ่งยา</th>
<th>แหล่งดอด</th>
<th>ผสมยาที่ดีที่สุด</th>
</tr>
</thead>
<tbody>
<tr>
<td>โนริฟูราโนซิน</td>
<td>2.5-5 ppm</td>
<td>4 มิลลิกรัมต่อน้ำหนักปก 1 กลิ่นคักรัก</td>
</tr>
<tr>
<td>โนริฟูราซอล</td>
<td>1-2 ppm</td>
<td>50 มิลลิกรัมต่อน้ำหนักปก 1 กลิ่นคักรัก</td>
</tr>
<tr>
<td>ฟูร่าไซคลิน</td>
<td>-</td>
<td>25 มิลลิกรัมต่อน้ำหนักปก 1 กลิ่นคักรัก</td>
</tr>
<tr>
<td>ยาด้านจุลชีพ</td>
<td>-</td>
<td>10 มิลลิกรัมต่อน้ำหนักปก 1 กลิ่นคักรัก</td>
</tr>
</tbody>
</table>
ชื่อเรื่องว่า
- ไม่ควรใช้เกลือร่วมกับยาในกลุ่ม tetracycline เพราะจะทำให้ยาเลือน ลู่หรือลด
- ไม่ควรใช้ยาต้านจุลชีพในการป้องกันโรค เพราะจะทำให้เกิดการติ่งยา ซึ่งแม้จะจำเป็นต้องใช้ยาในการรักษา จะทำให้การรักษาไม่ได้ผล
- การใช้ยาควรใช้ติดต่อกันเป็นเวลา 5 7 10 14 หรือ 20 วัน แล้วแต่ ชนิดยา
- เมื่อหายเกิดปฏิกิริยาแล้วสิ้นเปลืองยาคงมีไม่ควรน้ำยาหน้ามาก
- ไม่ควรบีบยาในที่ซึ่ง หรืออุดก่อนแช่เด็ด

ในกรณีเลี้ยงปลาเพื่อการบริโภคควรหยุดยากองการจับขายอย่างน้อย 21 วัน เพื่อให้เกิดการตกค้างของยาในสัตว์น้ำ

วิธีการขณะยาเข้าตัวยาเม็ดสำเร็จรูป
- กรณีที่ยาละลายได้ดี ให้ละลายในน้ำแล้วพ่นยาลงบนอาหารให้ ทั่ว จนกว่าน้ำจะได้แท้ (ที่สามารถดูได้ยากและแช่เด็ด) แล้วนำไปให้สัตว์น้ำหายกิน ถ้ายาที่เลือกใช้มีกลิ่นเหม็น ล้างน้ำอาจไม่กิน ควรนำอาหาร ที่ผสมยาแล้วมาคลุกเด็กสัตว์กับไข่น้ำมันปลา หรือหัวเรื่อนน้ำปลา เพื่อกลิ่น翰ของยา
- กรณีที่ยาไม่ละลายแล้ว เลือกนำยาคลุกกับอาหารแล้ว จึงนำอาหารนั้น โปรดคลุกเด็กกับไข่น้ำมันปลา น้ำมันพริก หรือสารเหนียว เพื่อให้ยาจับ อยู่กับเนื้อของอาหาร
การคำนวณปริมาตรน้ำ

เมื่อตัดสินใจจะใช้ยาหรือสารเคมีในการป้องกันหรือรักษาโรค ต้องคำนวณปริมาตรน้ำในบ่อ ซึ่งต้องคำนวณให้ถูกต้อง เพื่อให้การใช้ยาหรือสารเคมีมีประสิทธิภาพสูง

สูตรการคำนวณปริมาตรน้ำในบ่อที่เป็นรูปทรงสี่เหลี่ยม

ปริมาตรน้ำ = ความกว้างของบ่อ × ความยาวของบ่อ × ระดับความลึกของน้ำ

t่่น้อยที่สุด บ่อมีความกว้าง 5 เมตร ยาว 10 เมตร น้ำลึก 1 เมตร

ปริมาตรน้ำ = 5 × 10 × 1 lูกบาศก์เมตร

= 50 lูกบาศก์เมตร

หมายเหตุ การวัดขนาดของบ่อเป็นเมตรจะทำให้การคำนวณปริมาตรของน้ำในบ่อ

และยาหรือสารเคมีที่จะใช้งานขึ้น

การคำนวณปริมาตรยาหรือสารเคมี

ตัวอย่าง ถ้าต้องการใช้ฟอร์มอลินในอัตราส่วน 25 ลิตรในล้านส่วน (ppm) หรือ 25 มิลลิลิตรต่อน้ำ 1 ลูกบาศก์เมตร ในบ่อที่มีปริมาตรน้ำ 50 ลูกบาศก์เมตร

สูตร ปริมาตรยา = ปริมาตรน้ำ (ลูกบาศก์เมตร) × ความเข้มข้นยา (ppm)

dังนั้นจำเพาะต้องการใช้ฟอร์มอลินในอัตราส่วน 25 ppm

ต้องใช้ฟอร์มอลิน = 50 × 25 มิลลิลิตร

= 1250 มิลลิลิตร
การบริニュบทตัวหน่วยวัด

<table>
<thead>
<tr>
<th>หน่วยหลัก</th>
<th>1,000 มิลลิกรัม</th>
<th>=</th>
<th>1 กรัม</th>
</tr>
</thead>
<tbody>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>1,000 กรัม</td>
<td>=</td>
<td>1 กิโลกรัม</td>
<td></td>
</tr>
</tbody>
</table>

ปริมาตร

<table>
<thead>
<tr>
<th>หน่วยหลัก</th>
<th>1,000 มิลลิลิตร</th>
<th>=</th>
<th>1 ลิตร</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 ลิตร</td>
<td>=</td>
<td>1 ลูกบาศก์เมตร หรือ 1 ตัน หรือ 1 ดีก</td>
<td></td>
</tr>
</tbody>
</table>

พื้นที่

<table>
<thead>
<tr>
<th>หน่วย</th>
<th>1 ไร่</th>
<th>=</th>
<th>1,600 ตารางเมตร</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 งาน</td>
<td>=</td>
<td>400 ตารางเมตร</td>
<td></td>
</tr>
</tbody>
</table>

ความเข้มข้น

<table>
<thead>
<tr>
<th>หน่วย</th>
<th>1 ppm (ส่วนในล้านส่วน)</th>
<th>=</th>
<th>1 มิลลิกรัม/ลิตร (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>=</td>
<td>1 กรัม/เนื้อ 1 ลูกบาศก์เมตร</td>
<td></td>
</tr>
<tr>
<td></td>
<td>=</td>
<td>1 กรัม/เนื้อ 1 ตัน</td>
<td></td>
</tr>
<tr>
<td></td>
<td>=</td>
<td>1 มิลลิลิตร/เนื้อ 1,000 ลิตร</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>หน่วย</th>
<th>1 ppt (ส่วนในพันส่วน)</th>
<th>=</th>
<th>0.1 กรัม/เนื้อ 100 มิลลิลิตร</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>=</td>
<td>1 มิลลิลิตร/เนื้อ 1 ลิตร</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>หน่วย</th>
<th>1 เปรอร์เซ็นต์ (%)</th>
<th>=</th>
<th>10,000 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>=</td>
<td>10 กรัม/เนื้อ 1 ลิตร</td>
<td></td>
</tr>
<tr>
<td></td>
<td>=</td>
<td>10 มิลลิลิตร/เนื้อ 1 ลิตร</td>
<td></td>
</tr>
<tr>
<td></td>
<td>=</td>
<td>1 กรัม/เนื้อ 100 มิลลิลิตร</td>
<td></td>
</tr>
</tbody>
</table>